Journal of Organometallic Chemistry, 354 (1988) 31-37 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Zur Synthese von Siloxanen

XI *. Spaltung von Siloxanen durch Bortrifluorid

U. Scheim, A. Porzel

VEB Chemiewerk Nünchritz, Forschungsstelle Radebeul, Wilhelm-Pieck-Str. 35, Radebeul, DDR-8122 (D.D.R.)

und K. Rühlmann*

Sektion Chemie der Technischen Universität Dresden, Mommsenstr. 13, Dresden, DDR-8027 (D.D.R.) (Eingegangen den 11. Februar 1988)

Abstract

The cleavage of siloxane bonds by BF₃ was investigated kinetically by ¹H NMR spectroscopy. The reactions could be evaluated by use of a pseudo-first order rate law, when a sufficiently large excess of BF₃ was used. The order with respect to BF₃ was found to be 4.7. The rate constants obtained could be correlated to σ^* -values with a ρ^* -value of -1.0. The σ^* -value found previously by ²⁹Si NMR spectroscopy for the Me₃SiO group of 0.35 was confirmed.

Zusammenfassung

Die Spaltung von Siloxanbindungen mit BF₃ wurde mit Hilfe der ¹H-NMR-Spektroskopie kinetisch untersucht. Bei einem genügend großen BF₃-Überschuß konnten die Reaktionen mit einem Zeitgesetz pseudo-erster Ordnung ausgewertet werden. Bezüglich BF₃ wurde eine Ordnung von 4.7 gefunden. Die Geschwindigkeitskonstanten konnten mit σ^* -Werten korreliert werden. Es ergab sich ein ρ^* -Wert von -1.0.

Der früher von uns mit Hilfe der ²⁹Si-NMR-Spektroskopie bestimmte σ^* -Wert für die Me₃SiO-Gruppe von 0.35 konnte bestätigt werden.

Einleitung

Es ist schon seit einiger Zeit bekannt, daß Si-O-Bindungen durch Bortrifluorid gespalten werden können [3]. Diese Spaltungen beginnen mit der Addition der

^{*} X. Mitteilung siehe Ref. 1.

Lewis-Säure an ein freies Elektronenpaar des Sauerstoffatoms. So konnten Emeléus und Onyszchuk bei -96 °C ein festes Addukt von BF₃ an Hexamethyldisiloxan isolieren. Bei -78 °C dagegen wurden 1,3-Dimethyldisiloxan, 1,1,3,3-Tetramethyldisiloxan und Hexamethyldisiloxan durch BF₃ bereits gespalten [4]. In ähnlicher Weise bilden Hexamethylcyclotrisiloxan bzw. Octamethylcyclotetrasiloxan bei -50 °C mit BF₃ 1:3- bzw. 1:4-Komplexe [5], die sich nach einiger Zeit unter Spaltung von Si-O-Bindungen zersetzen.

Von Sommer et al. wurden Untersuchungen zur Stereochemie der Si-O-Spaltung mit BF₃ durchgeführt. Die Autoren fanden, daß sich (+)- α -Naphthylmethylphenylmethoxysilan mit BF₃ unter Inversion der Konfiguration am Si-Atom umsetzt. (-)-1,3-Di- α -naphthyl-1,3-dimethyl-1,3-diphenyldisiloxan dagegen reagierte unter den angewendeten Bedingungen innerhalb von 49 h nicht [6].

Die Umsetzung von Siloxanen mit Bortrifluorid wurde auch präparativ genutzt, um aus Siloxanen Fluorsilane herzustellen [7–9]. Kinetische Untersuchungen zur Siloxanspaltung mit Bortrifluorid wurden bisher nicht beschrieben.

Im Rahmen unserer Untersuchungen zu den Basisreaktionen der Silikonproduktion sollte die BF₃-Spaltung von Siloxanen als mechanistisch einfache Modellreaktion für die saure Siloxanspaltung genutzt werden. Das Ziel der vorliegenden Arbeit war es, die induktiven Einflüsse von Substituenten auf die Umsetzung von Siloxanen mit BF₃ zu untersuchen und dabei zugleich den bisher nur auf spektroskopischem Wege ermittelten σ^* -Wert für die Trimethylsiloxygruppe [2] zu überprüfen.

Experimentelles

Durchführung und Auswertung der kinetischen Messungen

Der zeitliche Verlauf der Reaktionen wurde mittels der ¹H-NMR-Spektroskopie verfolgt. Die Spektren wurden mit einem Spektrometer WH 90 DS der Firma Bruker, Analytische Meßtechnik GmbH, Karlsruhe, bei 90.02 MHz aufgenommen. Zur Auswertung der Spektren wurden die Höhen ausgewählter Signale der Ausgangsund Endprodukte benutzt. Die chemischen Verschiebungen dieser Signale sind in Tabelle 1 zusammengestellt.

Es wurden je nach den Halbwertszeiten der Reaktionen 7 bis 20 c/t-Wertepaare gemessen. Diese Werte ließen sich bis zu Umsätzen von 80–90% mit einem Zeitgesetz pseudo 1. Ordnung auswerten. Die Regressionskoeffizienten waren stets größer als 0.995.

Für jede Verbindung wurden 3 unabhängige Messungen durchgeführt. Die angegebenen Geschwindigkeitskonstanten sind die Mittelwerte der aus den Einzelmessungen erhaltenen k-Werte. Die Fehlergrenze betrug bis zu $\pm 10\%$. Diese relativ großen Schwankungen um den Mittelwert sind unter anderem darauf zurückzuführen, daß die Temperatur an verschiedenen Meßtagen bis zu ± 1 K schwankte.

Für die Messungen wurden in einem NMR-Probenröhrchen 0.5 ml BF₃-Dioxan (3.40...5.68 mol/l) und 0.04 ml C₆D₆ gemischt. Die Reaktion wurde dann durch die Zugabe von jeweils 0.02 ml Siloxan gestartet.

Darstellung von BF₃-Dioxan

0.5 mol Bortrifluorid-Ether-Addukt wurden mit 0.5 mol Dioxan versetzt und der gebildete Ether aus dem Gleichgewicht über eine 20-cm-Vigreuxkolonne abdestilliert, bis sich in der Kolonne Kristalle abzuscheiden begannen. Der im Kolben

Tabelle 1

Siloxan		δ(ppm)	Reaktionsprodukt(e)	$\delta(ppm)$
(Me ₃ Si) ₂ O	(1)	0.063	Me ₃ SiF	0.200
Me ₃ SiOSi Me ₂ CH ₂ Br	(2)	0.199	BrCH ₂ Me ₂ SiF	0.353
		0.099	Me ₃ SiF	0.200
Me ₃ SiOSi <i>Me</i> ₂ Ph	(3)	0.312	Me ₃ SiF	0.200
		0.087	PhMe ₂ SiF	0.462
(PhMe ₂ Si) ₂ O	(4)	0.320	PhMe ₂ SiF	0.462
$(p-TolMe_2Si)_2O$	(5)	0.298	<i>p</i> -TolMe ₂ SiF	0.437
(p-ClC ₆ H ₄ Me ₂ Si) ₂ O	(6)	0.320	p-ClC ₆ H ₄ Me ₂ SiF	0.455
$(p-FC_6H_4Me_2Si)_2O$	(7)	0.318	$p-FC_6H_4Me_2SiF$	0.454
$(Me_3SiO)_2SiMe_2$	(8)	0.091	Me ₃ SiOSi Me ₂ F	0.144
		0.022		0.122
			Me ₃ SiF	0.200
$(Me_2 SiO)_3 SiMe$	(9)	0.104	$(Me_3SiO)_2SiMeF$	0.116
			Me ₃ SiOSiMeF ₂	0.136
			Me ₃ SiF	0.200
$(Me_2SiO)_3$	(10)	0.207	$(FMe_2SiO)_2SiMe_2$	0.187
				0.148
$(Me_2SiO)_4$	(11)	0.096	$(FMe_2SiOSiMe_2)_2O$	0.184
,	. ,		• •	0.127

Chemische Verschiebungen der für die Auswertung benutzten ¹H-NMR-Methylprotonensignale (kursiv gedruckte Werte beziehen sich auf die kursiv gedruckten Methylgruppen)

verbliebene Rückstand wurde durch Vakuumdestillation gereinigt. Es wurde ein farbloser bis leicht gelblicher Feststoff erhalten, der über eine längere Zeit unzersetzt aufbewahrt werden konnte. Die Eigenschaften des Produktes entsprachen den in [10] angegebenen.

Für die kinetischen Messungen wurden ausgewogene Mengen des BF_3 -Dioxan-Adduktes in entsprechenden Mengen wasserfreiem Dioxan gelöst.

Darstellung der Siloxane

Die 1,3-Diaryltetramethyldisiloxane wurden durch Hydrolyse der entsprechenden Chloraryldimethylsilane mit Wasser hergestellt. Unter den Reaktionsbedingungen kondensieren die zunächst als Zwischenprodukt gebildeten Silanole vollständig zu den Disiloxanen [11].

Pentamethylphenyldisiloxan wurde durch die Umsetzung von Lithium-Dimethylphenylsilanolat mit Chlortrimethylsilan synthetisiert. Das Silanolat wurde aus Phenyllithium und D_4 erhalten [12]. Brommethylpentamethyldisiloxan wurde durch Bromierung von Hexamethyldisiloxan gewonnen [13]. D_4 wurde aus dem im VEB Chemiewerk Nünchritz verfügbaren Cyclengemisch durch fraktionierende Destillation abgetrennt. D_3 war durch Pyrolyse des Silikonöles NM 15 (VEB Chemiewerk Nünchritz) zugänglich [14].

Die Siloxane M_2D und M_3T wurden durch Umsetzung von Dichlordimethylsilan bzw. Trichlormethylsilan mit Hexamethyldisiloxan in Gegenwart von Schwefelsäure und Wasser entsprechend [15] hergestellt.

Die physikalischen Konstanten aller verwendeten Siloxane stimmten mit den in der Literatur angegebenen überein. Alle Verbindungen waren gaschromatographisch rein.

Ergebnisse und Diskussion

Aus dem bisher Dargelegten ließ sich der folgende Mechanismus ableiten, bei dem zunächst Medieneffekte und Assoziatbildung des BF₃ nicht berücksichtigt wurden:

$$(R_{3}Si)_{2}O + O \cdot BF_{3} = (R_{3}Si)_{2}O \cdot BF_{3} + O O (1)K$$

$$(R_{3}Si)_{2}O \cdot BF_{3} = R_{3}SiF_{1} + R_{3}SiOBF_{2}$$

$$(2)K$$

$$R_{3}SiOBF_{2} + O O \cdot BF_{3} = R_{3}SiOBF_{2} \cdot BF_{3} + O O (3)$$

$$R_{3}SiOBF_{2} \cdot BF_{3} = R_{3}SiF_{1} + (BF_{2})_{2}O$$

$$(4)$$

In einem vorgelagerten Gleichgewicht (1) bildet sich zunächst ein Addukt aus Bortrifluorid und Siloxan, das dann im geschwindigkeitsbestimmenden Schritt (2) in Fluorsilan und R_3SiOBF_2 zerfällt. Das hypothetische Zwischenprodukt R_3SiOBF_2 konnte nicht nachgewiesen werden. Es reagiert offenbar schnell nach (3) und (4) unter der Bildung eines weiteren Moleküls Fluorsilan und eines nicht näher untersuchten Fluorboroxids weiter.

Die erhaltenen Konzentrations-Zeit-Wertepaare ließen sich mit einem Zeitgesetz erster Ordnung auswerten. Um die Ordnung bezüglich BF₃ zu ermitteln, wurde die Spaltung von Hexamethyldisiloxan und Tetramethyl-1,3-diphenyldisiloxan bei verschiedenen BF₃-Konzentrationen verfolgt. Die ermittelten Geschwindigkeitskonstanten sind aus Tabelle 2 ersichtlich. Aus diesen Werten ergibt sich für den untersuchten Konzentrationsbereich in Bezug auf BF₃ eine Ordnung von 4.7. Diese hohe Reaktionsordnung spiegelt Assoziationseffekte im System Dioxan-BF₃ wider (vgl. dazu auch [10]).

Um eine Vergleichbarkeit der einzelnen Geschwindigkeitskonstanten zu gewährleisten, wurden alle weiteren Messungen mit einer BF₃-Dioxanlösung mit $4.25 \text{ mol}/1 \text{ BF}_3$ durchgeführt.

Die unter diesen Bedingungen erhaltenen Geschwindigkeitskonstanten k_{exp} sind in Tabelle 3 zusammengestellt. Zur Ermittlung der Substituenteneinflüsse wurden die Logarithmen der Geschwindigkeitskonstanten k_{exp} mit den ρ^* -Werten der Substituenten [16] korreliert. Dabei wurde ein ρ -Wert von -1.0 erhalten. Dieser

Tabelle 2

Spaltung von Hexamethyldisiloxan (1) und Tetramethyl-1,3-diphenyldisiloxan (4) in Gegenwart verschiedener BF_3 -Konzentrationen ([SiOSi]₀ = 0.168 mol l^{-1} , Temperatur: 303 K)

$[BF_3] \pmod{l^{-1}}$	$k_{\exp}(1) \cdot 10^3 (s^{-1})$	$k_{exp}(4) \cdot 10^3 (s^{-1})$	
5.68	11.3	1.30	
4.25	3.00	0.33	
3.83	1.83	0.19	
3.40	1.00		
Ordnung in Bezug auf BI	3		
	4.7	4.8	

Tabelle 3

Siloxan		$k_{\exp} \cdot 10^4 (s^{-1})$	Σσ*
(Me ₃ Si) ₂ O	(1)	30	0.00
Me ₃ SiOSiMe ₂ CH ₂ Br	(2)	2.33	1.00
Me ₃ SiOSiMe ₂ Ph	(3)	10	0.48
$(PhMe_2Si)_2O$	(4)	3.3	0.96
$(p-TolMe_2Si)_2O$	(5)	7.3	0.62
$(p-ClC_6H_4Me_2Si)_2O$	(6)	1.0	1.42
$(p-FC_6H_4Me_2Si)_2O$	(7)	2.7	1.08
(Me ₁ SiO) ₂ SiMe ₂	(8)	14	0.35
(Me ₃ SiO) ₃ SiMe	(9)	10	0.70
$(Me_2SiO)_3$	(10)	37	
(Me ₂ SiO) ₄	(11)	1.9	

Geschwindigkeitskonstanten k_{exp} der Spaltung von Siloxanen mit BF₃ ([BF₃] = 4.25 mol 1⁻¹, Temperatur: 303 K)

Wert setzt sich aus einem stark negativen Beitrag für das Gleichgewicht (1) und einem positiven Anteil für die geschwindigkeitsbestimmende nukleophile Substitution (2) zusammen. Negative ρ -Werte in der Größenordnung von -1 sind charakteristisch für sauer katalysierte nukleophile Substitutionen am Silicium [17].

Für die Berechnung der σ^* -Werte substituierter Arylreste wurde der σ^* -Wert für eine Phenylgruppe am Si-Atom von 0.48 zugrundegelegt. Diesen Wert konnten wir aus der von Engelhardt e.a. [18] angegebenen Geraden für die Korrelation der ²⁹Si-NMR-Shift-Werte δ der monofunktionellen Si-Atome in Verbindungen des Typs (Me₃SiO)₃SiR mit den σ^* -Werten für R und dem für Ph angegebenen δ -Wert berechnen. Die gleiche Größe ergab sich auch aus Werten, die Nagai zur Korrelation von Si-H-Kopplungskonstanten mit σ^* -Werten veröffentlicht hatte [19]. Nagai hatte hierbei für die Phenylgruppe den in der C-Chemie üblichen Wert von 0.6 eingesetzt. Ohne Berücksichtigung dieses Wertes wird die Korrelation für die alkylund halogenalkylsubstituierten Silane jedoch deutlich besser. Setzt man nun die Kopplungskonstante für das Phenylsilan in die Beziehungsgleichung ein, so erhält man wiederum den Wert 0.48. Der niedrigere σ^* -Wert für die Phenylgruppe am Si-Atom ist wegen der Rückführung von Ladung durch eine $(p \rightarrow d)\pi$ -Wechselwirkung durchaus plausibel. Die σ^* -Werte substituierter Arylreste ergaben sich dann aus der Beziehung

$$\sigma_{C_6H_4-X}^{\star} = \sigma_X + 0.48$$

Für die σ_X -Werte wurden die von Jaffé angegebenen Hammett-Werte [20] verwendet.

Da bei den von uns eingesetzten Verbindungen 1-9 (vgl. Tabelle 1) Reaktionszentren in unterschiedlicher Anzahl vorhanden sind, müssen die statistischen Verhältnisse berücksichtigt werden. Bei den symmetrisch substituierten Disiloxanen ist für Reaktion (1) nur ein Reaktionszentrum vorhanden. Die sich daran anschließende nukleophile Substitution (2) kann aber an beiden Si-Atomen gleichberechtigt ablaufen. Es gehen also die Gleichgewichtskonstante K mit dem statistischen Gewicht 1 und die Geschwindigkeitskonstante k mit dem statistischen Gewicht 2 in den experimentell ermittelten k-Wert ein.

$$k_{\exp} = K \cdot 2 \cdot k \tag{5}$$

Beim Trisiloxan M_2D sind 2 Sauerstoffatome vorhanden. Das heißt, hier bekommt die Gleichgewichtskonstante das Gewicht 2, für den folgenden Schritt sind die Verhältnisse komplizierter. Es gibt zwei Möglichkeiten:

1. Der geschwindigkeitsbestimmende nukleophile Angriff findet sowohl am mono- (k_1) als auch am difunktionellen Si-Atom (k_2) statt. Die experimentell ermittelte Geschwindigkeitskonstante setzt sich dann entsprechend:

$$k_{\exp} = 2 \cdot K \cdot (k_1 + k_2) \tag{6}$$

zusammen.

2. Der nukleophile Angriff findet bevorzugt am difunktionellen Si-Atom statt $(k_1 \ll k_2)$. Dann vereinfacht sich (6) zu

$$k_{\rm exp} = 2 \cdot K \cdot k_2$$

Der experimentelle k-Wert für M₂D sollte in diesem Fall also unmittelbar mit den k_{exp} -Werten der symmetrisch substituierten Disiloxane vergleichbar sein. Da sich k_{exp} (M₂D) bei Verwendung von σ^* (Me₃SiO) = 0.35 gut in die Korrelation der für die anderen Verbindungen bestimmten k_{exp} -Werte mit den entsprechenden σ^* -Werten einordnet, liegt offenbar Fall 2 vor.

Für M₃T mit der Möglichkeit des nukleophilen Angriffs an einem mono- (k_1) oder einem trifunktionellen Si-Atom (k_3) ergibt sich unter der analogen Annahme von $k_1 \ll k_3$

$$k_{\rm exp} = 3 \cdot K \cdot k_3$$

Um k_{exp} (M₃T) mit den k_{exp} -Werten der anderen Verbindungen vergleichen zu können, muß k_{exp} (M₃T) also mit 2/3 multipliziert werden. Der so korrigierte Wert von k_{exp} fügt sich ebenfalls gut in die Korrelation ein (Fig. 1). Damit kann zugleich wiederum der für die Trimethylsiloxygruppe spektroskopisch ermittelte σ^* -Wert von 0.35 [2] bestätigt werden.

Für die unsymmetrischen Disiloxane $Me_3SiOSiMe_2(CH_2Br)$ und $Me_3SiOSi-Me_2Ph$ sollte sich der Ausdruck

$$k_{\rm exp} = K(k_1 + k_1')$$

Fig. 1. Korrelation der Logarithmen der Geschwindigskeitskonstanten k_{exp} mit $\Sigma \sigma^*$. x = statistisch korrigierter Wert für M₃T (Die Verbindungsnummern entsprechen denen in Tabelle 1).

ergeben. Da sich die experimentell ermittelten Werte für diese Verbindungen gut in die lineare Korrelation einfügen, sind offenbar die Unterschiede zwischen k_1 und k'_1 deutlich geringer als die Unterschiede zwischen k_1 und k_2 bzw. k_3 , so daß tatsächlich der nukleophile Angriff an beiden monofunktionellen Si-Atomen berücksichtigt werden muß.

 D_3 reagiert wesentlich schneller, als unter Berücksichtigung der induktiven Effekte zu erwarten wäre. Diese Anomalie beruht vermutlich auf der relativ hohen Basizität der Siloxansauerstoffe im D_3 , durch die das Gleichgewicht (1) günstig beeinflußt wird. Die geringe Reaktivität des D_4 kann zur Zeit nicht gedeutet werden.

Die gute Korrelation der k_{exp} -Werte mit den σ^* -Werten nach Taft spricht dafür, daß sterische Effekte bei der Siloxanspaltung mit Bortrifluorid keine ausgeprägte Rolle spielen.

Literatur

- 1 J. Brumme, A. Porzel, K. Rühlmann und H. Große-Ruyken, Plaste Kautschuk, 35 (1988) 211.
- 2 U. Scheim, H. Große-Ruyken, K. Rühlmann und A. Porzel, J. Organomet. Chem., 312 (1986) 27.
- 3 E. Wiberg und U. Krüerke, Z. Naturforsch. B, 8 (1953) 608, 609, 610.
- 4 H.J. Emeléus und M. Onyszchuk, J. Chem. Soc., (1958) 604.
- 5 P.A. McCusker und T. Ostdick, J. Amer. Chem. Soc., 81 (1959) 5550.
- 6 L.H. Sommer, J.D. Citron und G.A. Parker, J. Amer. Chem. Soc., 91 (1969) 4729.
- 7 L.H. Sommer und G.R. Ansul, J. Amer. Chem. Soc., 77 (1955) 2482.
- 8 J.L. Speier, M.P. David und B.A. Eynon, J. Org. Chem., 25 (1960) 1637.
- 9 L.H. Sommer, US 2.713.063, (12.7.1955), CA: 50 (1956) 5742 a.
- 10 J. Grimley und A.K. Holliday, J. Chem. Soc., (1954) 1215.
- 11 D.W. Lewis und C.G. Gainer, J. Amer. Chem. Soc., 74 (1952) 2931.
- 12 C.L. Frye, R.M. Salinger, F.W.G. Fearon, J.M. Klosowski und T. De Young, J. Org. Chem., 35 (1970) 1308.
- 13 J.L. Speier, J. Amer. Chem. Soc., 73 (1951) 826.
- 14 H. Okamoto und J. Yanagisawa, JP Kokai 74 92 025, (3.9.1974), CA: 82 (1975) 98810 e.
- 15 U. Scheim, H. Große-Ruyken, K. Rühlmann und G. Schmidt, DD-WP 226 567, (28.8.85), CA: 105 (1986) 153295 m.
- 16 R.W. Taft, in M.S. Newman (Hrsg.), Steric Effects in Organic Chemistry, J. Wiley and Sons, New York, 1956, Chap. 13.
- 17 K. Rühlmann, J. Brumme, U. Scheim und H. Große-Ruyken, J. Organomet. Chem., 291 (1985) 165.
- 18 G. Engelhardt, H. Jancke, R. Radeglia, H. Kriegsmann, M.F. Larin, V.A. Pestunovich, E.I. Dubinskaya und M.G. Voronkov, Z. Chem., 17 (1977) 376.
- 19 Y. Nagai, H. Matsumoto, T. Nakano und H. Watanabe, Bull. Chem. Soc. Japan, 45 (1984) 2560.
- 20 H.H. Jaffé, Chem. Rev., 53 (1953) 191.